

1 Degradation Kinetics and Secondary Organic Aerosol Formation

2 from Eugenol by Hydroxyl Radicals

- 3 Changgeng Liu^{1,2}, Yongchun Liu^{1,3,4,a,*}, Tianzeng Chen^{1,4}, Jun Liu^{1,4}, Hong He^{1,3,4,*}
- 4 ¹State Key Joint Laboratory of Environment Simulation and Pollution Control,
- 5 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,
- 6 Beijing 100085, China
- 7 ²School of Biological and Chemical Engineering, Panzhihua University, Panzhihua
- 8 617000, China
- 9 ³Center for Excellence in Regional Atmospheric Environment, Institute of Urban
- 10 Environment, Chinese Academy of Sciences, Xiamen 361021, China
- ⁴University of Chinese Academy of Sciences, Beijing 100049, China
- 12 ^aCurrently at: Beijing Advanced Innovation Center for Soft Matter Science and
- 13 Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- 14 Correspondence to: Yongchun Liu (liuyc@buct.edu.cn) and Hong He
- 15 (honghe@rcees.ac.cn)

16	Abstract. Methoxyphenols are an important organic component of wood-burning
17	emissions and considered to be potential precursors of secondary organic aerosols
18	(SOA). In this work, the rate constant and SOA formation potential for the OH-initiated
19	reaction of 4-allyl-2-methoxyphenol (eugenol) were investigated for the first time in an
20	oxidation flow reactor (OFR). The rate constant was (8.01 $\pm 0.40) \times 10^{-11}cm^3$ molecule
21	1 s ⁻¹ as determined by the relative rate method. The SOA yield first increased and then
22	decreased as a function of OH exposure, and was also dependent on eugenol
23	concentration. The maximum SOA yields (0.11-0.31) obtained at different eugenol
24	concentrations could be expressed well by an one-product model. The carbon oxidation
25	state (OS_C) increased linearly and significantly as OH exposure rose, indicating that a
26	high oxidation degree was achieved for SOA. In addition, the presence of SO_2 (0–198
27	ppbv) and NO ₂ (0–109 ppbv) was conducive to increasing SOA yield, for which the
28	maximum enhancement values were 38.57% and 19.17%, respectively. The N/C ratio
29	(0.032-0.043) indicated that NO ₂ participated in the OH-initiated reaction,
30	subsequently forming organic nitrates. The results could be helpful for further
31	understanding the SOA formation potential from the atmospheric oxidation of
32	methoxyphenols and the atmospheric aging process of smoke plumes from biomass-
33	burning emissions.

34 1 Introduction

35	Wood combustion is a major contributor to atmospheric fine particulate matter (PM)
36	(Bruns et al., 2016), which could contribute approximately 10-50% of the total organic
37	fraction of atmospheric aerosols (Schauer and Cass, 2000). In some regions with cold
38	climates, wood smoke-associated aerosols are estimated to account for more than 70%
39	of PM _{2.5} in winter (Jeong et al., 2008; Ward et al., 2006). Recently, significant potential
40	of secondary organic aerosol (SOA) formation from wood smoke emissions has been
41	reported (Bruns et al., 2016; Gilardoni et al., 2016; Tiitta et al., 2016; Ciarelli et al.,
42	2017; Ding et al., 2017). In addition, the organic compounds derived from wood
43	combustion and their oxidation products may contribute significantly to global
44	warming due to their light-absorbing properties (Chen and Bond, 2010). It has been
45	reported that wood smoke particles are predominant in the inhalable size range (Bari et
46	al., 2010) and that their extracts are mutagenic (Kleindienst et al., 1986). Exposure to
47	wood smoke can result in adverse health effects associated with acute respiratory
48	infections, tuberculosis, lung cancer, cataracts, etc. (Bolling et al., 2009). Therefore,
49	wood combustion has multifaceted impacts on climate, air quality, and human health.
50	Methoxyphenols produced by lignin pyrolysis are potential tracers for wood smoke,
51	and their emission rates are in the range of 900–4200 mg kg ⁻¹ fuel (Schauer et al., 2001;
52	Simpson et al., 2005; Nolte et al., 2001). The highest level of methoxyphenols in the
53	atmosphere always appears during a wood smoke-dominated period, with observed
54	values up to several mg m ⁻³ (Schauer and Cass, 2000; Schauer et al., 2001; Simpson et

55	al., 2005). Methoxyphenols are semi-volatile aromatic compounds with low molecular
56	weight, and many of them are found to mainly exist in the gas phase at typical ambient
57	temperature (Simpson et al., 2005; Schauer et al., 2001). Thus, methoxyphenols can be
58	chemically transformed through gas-phase reactions with atmospheric oxidants (Coeur-
59	Tourneur et al., 2010a; Lauraguais et al., 2012, 2014a, 2014b, 2015, 2016; Yang et al.,
60	2016; Zhang et al., 2016; El Zein et al., 2015). The corresponding rate constants control
61	their effectiveness as stable tracers for wood combustion and atmospheric lifetimes. In
62	recent years, the rate constants for the gas-phase reactions of some methoxyphenols
63	with hydroxyl (OH) radicals (Coeur-Tourneur et al., 2010a; Lauraguais et al., 2012,
64	2014b, 2015), nitrate (NO ₃) radicals (Lauraguais et al., 2016; Yang et al., 2016; Zhang
65	et al., 2016), chlorine atoms (Cl) (Lauraguais et al., 2014a) and ozone (O ₃) (El Zein et
66	al., 2015) have been determined. Some studies have indicated significant SOA
67	formation from 2,6-dimethoxyphenol (syringol) and 2-methoxyphenol (guaiacol) with
68	respect to their reactions with OH radicals (Sun et al., 2010; Lauraguais et al., 2012,
69	2014b; Ahmad et al., 2017; Yee et al., 2013; Ofner et al., 2011). Although biomass-
70	burning emissions have been indicated to have great SOA formation potential via
71	atmospheric oxidation (Bruns et al., 2016; Gilardoni et al., 2016; Li et al., 2017; Ciarelli
72	et al., 2017; Ding et al., 2017), SOA formation and growth from methoxyphenols are
73	still poorly understood. Besides, the observed SOA levels in the atmosphere cannot be
74	well explained by the present knowledge on SOA formation, which reflects the fact that
75	a large number of precursors are not taken into account in the SOA-formation reactions

76	included in the atmospheric models (Lauraguais et al., 2012).
77	4-Allyl-2-methoxyphenol (eugenol), a type of methoxyphenols, is a typical
78	compound produced by ligin pyrolysis with a branched alkene group, and is widely
79	detected in the atmosphere (Schauer et al., 2001; Simpson et al., 2005; Bari et al., 2009).
80	Its average emission concentration and factor in beech burning are 0.032 $\mu g \ m^{\text{-3}}$ and
81	$1.52~\mu g~{\rm g}^{-1}$ PM, respectively, which are both higher than those (0.016 $\mu g~m^{-3}$ and 0.762
82	μ g g ⁻¹ PM) of guaiacol (Bari et al., 2009). It has even be detected in human urine after
83	exposure to wood smoke (Dills et al., 2006). Eugenol has been observed to mainly
84	distribute in the gas phase in wood smoke emissions (Schauer et al., 2001), and its
85	gas/particle-partition coefficient is lower than 0.01 (Zhang et al., 2016), thus indicating
86	the importance of its gas-phase reactions in the atmosphere. For this reason, the aim of
87	this work was to determine the rate constant and explore the SOA formation potential
88	for eugenol in the gas-phase reaction with OH radicals using an Oxidation Flow Reactor
89	(OFR). In addition, the effects of SO_2 and NO_2 on SOA formation were investigated.
90	To our knowledge, this work represents the first determination of the rate constant and
91	SOA yield for the gas-phase reaction of eugenol with OH radicals.

92 2 Experimental section

The detailed schematic description of the experimental system used in this work is 93 94 shown in Figs. S1 and S2. The gas-phase reactions were conducted in the OFR, whose 95 detailed description has been presented elsewhere (Liu et al., 2014). Before entering 96 into the OFR, gas-phase species were mixed thoroughly in the mixing tube. The

97	reaction time in the OFR was 26.7 s, calculated according to the illuminated volume
98	(0.89 L) and the total flow rate (2 L min ⁻¹). OH radicals were generated by photolysis
99	of O_3 in the presence of water vapor using a 254 nm UV lamp (Jelight Co., Inc.), and
100	their formation reactions have been described elsewhere (Zhang et al., 2017). The
101	concentration of OH radicals was governed by O3 concentration and relative humidity
102	(RH). O_3 concentration was controlled by changing the unshaded length of a 185 nm
103	UV lamp (Jelight Co., Inc.). O_3 was produced by passing zero air through an O_3
104	generator (Model 610-220, Jelight Co., Inc.), and its concentration was in the range of
105	0.94-9.11 ppmv in this work measured with an O ₃ analyzer (Model 205, 2B Technology
106	Inc.). RH and temperature in the OFR were (44.0 \pm 2.0)% and (301 \pm 1) K, respectively,
107	measured at the outlet of the OFR. The steady-state concentrations of OH radicals were
108	determined using SO ₂ as the reference compound in separate calibration experiments.
109	It is a widely-used method for calculating OH exposure in the OFR, but could not well
110	describe the potential OH suppression caused by the added external OH reactivity
111	(Zhang et al., 2017; Lambe et al., 2015; Simonen et al., 2017; Li et al., 2015; Peng et
112	al., 2015, 2016). The decay of SO ₂ from its reaction with OH radicals (9 $\times 10^{-13}~{\rm cm}^3$
113	molecule ⁻¹ s ⁻¹) (Davis et al., 1979) was measured by a SO ₂ analyzer (Model 43i, Thermo
114	Fisher Scientific Inc.). The concentration of OH radicals ([OH]) in this work ranged
115	from approximate 4.5 $\times 10^9$ to 4.7 $\times 10^{10}$ molecules cm^-3, and the corresponding OH
116	exposures were in the range of 1.21–12.55 $\times 10^{11}$ molecules cm ⁻³ s or approximate 0.93
117	to 9.68 d of equivalent atmospheric exposure.

118	An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-
119	AMS) was applied to perform online measurement of the chemical composition of
120	particles and the non-refractory submicron aerosol mass (DeCarlo et al., 2006). The
121	size distribution and concentration of particles were monitored by a scanning mobility
122	particle sizer (SMPS), consisting of a differential mobility analyzer (DMA) (Model
123	3082, TSI Inc.) and a condensation particle counter (CPC) (Model 3776, TSI Inc.).
124	Assuming that particles are spherical and non-porous, the average effective particle
125	density could be calculated to be 1.5 g cm ⁻³ using the equation $\rho = d_{va}/d_m$ (DeCarlo et al.,
126	2004), where d_{va} is the mean vaccum aerodynamic diameter measured by HR-ToF-
127	AMS and $d_{\rm m}$ is the mean volume-weighted mobility diameter measured by SMPS. The
128	mass concentration of particles measured by HR-ToF-AMS was corrected by SMPS
129	data in this work using the same method as Gordon et al. (2014). Eugenol and reference
130	compounds were measured by a proton-transfer reaction time-of-flight mass
131	spectrometer (PTR-QiToF-MS) (Ionicon Analytik GmbH). More experimental details
132	were described in the supplementary information.

- 133 3 Results and discussion
- 134 **3.1 Rate constant**

In order to investigate the possible photolysis of eugenol and reference compounds at 254 nm UV light in the OFR, the comparative experiments were conducted with UV lamp turned on and turned off. The normalized mass spectra of eugenol and reference compounds in the dark and light were shown in Fig. S3. The results showed that no

139	significant decay (<5%) by photolysis was observed and could be neglected. According
140	to the results reported by Peng et al. (2016), the photolysis of phenol and 1,3,5-
141	trimethylbenzene could be ignored when the ratio of exposure to 254 nm and OH is
142	lower than 1×10^6 cm s ⁻¹ , of which value in this work also met this condition. In addition,
143	the initial concentration of eugenol was determined with UV lamp turned on. Therefore,
144	the effect of photolysis could be neglected in this work.
145	The rate constant for the gas-phase reaction of eugenol with OH radicals was
146	determined by the relative rate method, which can be expressed as the following
147	equation (Coeur-Tourneur et al., 2010a; Yang et al., 2016; Zhang et al., 2016):
148	$\ln(C_{\rm E0}/C_{\rm Et}) = \ln(C_{\rm R0}/C_{\rm Rt})k_{\rm E}/k_{\rm R} $ (1)
149	where C_{E0} and C_{Et} are the initial and real-time concentrations of eugenol, respectively.
150	$k_{\rm E}$ is the rate constant of the eugenol reaction with OH radicals. C _{R0} and C _{Rt} are the
151	initial and real-time concentrations of reference compound, respectively. $k_{\rm R}$ is the rate
152	constant of the reference compound with OH radicals, of which values for m -xylene
153	and 1,3,5-trimethylbenzene are 2.20 \times $10^{\text{-}11}$ and 5.67 \times $10^{\text{-}11}$ cm^3 molecule^{\text{-}1} \text{ s}^{\text{-}1},
154	respectively (Kramp and Paulson, 1998; Coeur-Tourneur et al., 2010a).
155	Data obtained from the reactions were plotted in the form of Eq. (1) and were well
156	fitted by linear regression ($R^2 > 0.97$, Fig. 1). A summary of the slopes and the rate
157	constants are listed in Table 1. The errors in $k_{\rm E}/k_{\rm R}$ are the standard deviations generated
158	from the linear regression analysis and do not include the uncertainty in the rate
159	constants of the reference compounds. The rate constants are (7.54 $\pm 0.28) \times 10^{-11}$ and

160	(8.47 \pm 0.51) \times 10^{-11} cm^3 molecule^{-1} s^{-1}, respectively, when using 1,3,5-
161	trimethylbenzene and <i>m</i> -xylene as reference compounds. According to the US EPA
162	AOP WIN model based on the structure activity relationship (SAR) (US EPA, 2012)
163	the rate constant was calculated to be 6.50 $\times 10^{\text{-}11}\text{cm}^3$ molecule^{\text{-}1} s^{\text{-}1} (Table 1), which
164	is lower than that obtained in this work. Inaccurate performance of the AOP WIN model
165	has been observed for other multifunctional organics due to the inaccurate
166	representation of the eletronic effects of different functional groups on reactivity
167	(Coeur-Tourneur et al., 2010a; Lauraguais et al., 2012). This suggests that it is necessary
168	to determine the rate constants of multifunctional organics through lab experiments.
169	The rate constant determined in this work can be used to calculate the atmospheric
170	lifetime of eugenol with respect to its reaction with OH radicals. Assuming a typical
171	[OH] for a 24 h average value to be 1.5 $\times 10^6$ molecules cm 3 (Mao et al., 2009), the
172	corresponding lifetime of eugenol was calculated to be 2.31 h with the average rate
173	constant of 8.01 $\times 10^{-11}$ cm ³ molecule ⁻¹ s ⁻¹ . This short lifetime indicates that eugenol is
174	too reactive to be used as a tracer for wood smoke emissions, and also implies the
175	possible fast conversion of eugenol from gas-phase to secondary aerosol during the
176	transportation process.

The rate constant obtained in this work is about 2 orders of magnitude faster than that for eugenol with NO₃ radicals $(1.6 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$ (Zhang et al., 2016), which suggests that the OH-initiated reaction of eugenol might be the main chemical transformation in the atmosphere. The rate constants of the OH-initiated reactions of

181	guaiacol, 2,6-dimethylphenol, and syringol were 7.53 $\times 10^{-11},$ 6.70 $\times 10^{-11},$ and 9.66 \times
182	10 ⁻¹¹ cm ³ molecule ⁻¹ s ⁻¹ , respectively (Coeur-Tourneur et al., 2010a; Thuner et al., 2004;
183	Lauraguais et al., 2012). The reactivity of eugenol toward OH radicals is slightly higher
184	than those of guaiacol and 2,6-dimethylphenol, while slightly slower than that of
185	syringol. The presence of two methoxyl groups (-OCH ₃) in syringol activates the
186	electrophilic addition of OH radicals to the benzene ring by donating electron density
187	through the resonance effect (Lauraguais et al., 2016). The activation effect of the
188	methoxyl group is much larger than those of alkyl groups (McMurry, 2004). In a recent
189	study, the reported energy barrier of NO3 electrophilic addition to eugenol was about 2-
190	fold than that of 4-ethylguaiacol, indicating that the activation effect of the allyl group
191	(-CH ₂ CH=CH ₂) is lower than that of the ethyl group (-CH ₂ CH ₃) (Zhang et al., 2016).
192	These results are in accordance with the activation effects of the substituants toward the
193	electrophilic addition of OH radicals (McMurry, 2004).
194	3.2 Effects of eugenol concentration and OH exposure on SOA formation
195	In this work, a series of experiments were conducted in the OFR with different eugenol

196 concentrations. The SOA yield was determined as the ratio of the SOA mass 197 concentration (M_0 , µg m⁻³) to the reacted eugenol concentration (Δ [eugenol], µg m⁻³) 198 (Kang et al., 2007). The experimental conditions and maximum SOA yields are listed 199 in Table 2. Fig. S4 shows the plots of the SOA yield versus OH exposure at different 200 eugenol concentrations. Higher concentrations resulted in higher amounts of 201 condensable products and subsequently increased SOA yield (Lauraguais et al., 2012).

202	SOA mass also directly influences the gas/particle partitioning, because SOA can serve
203	as the adsorption medium for oxidation products, and higher SOA mass generally
204	results in higher SOA yield (Lauraguais et al., 2012, 2014b). In the OFR, in all cases
205	the SOA yield first increased and then decreased as a function of OH exposure (Fig.
206	S4). This trend is the most common phenomenon observed in PAM reactor studies
207	(Lambe et al., 2015; Ortega et al., 2016; Simonen et al., 2017). In this work, according
208	to the SO_2 decay in the presence of eugenol and the OFR exposure estimator (v2.3)
209	developed by Jimenez's group based on the estimation equations reported in the
210	previous work (Li et al., 2015; Peng et al., 2015, 2016), the maximum reduction of OH
211	exposure by eugenol in the OFR was approximately 30%. Although OH suppression by
212	eugenol was not well determined in the OFR for the positive influence of SO_2 on SOA
213	formation, OH radicals were expected to be the main oxidant due to the fast reaction
214	rate constant of eugenol toward OH radicals obtained in this work. The decrease of
215	SOA yield at high OH exposure is possibly contributed from the C–C bond scission of
216	gas-phase species by further oxidation or heterogeneous reactions involving OH
217	radicals, which would generate a large amount of fragmented molecules that could not
218	condense on aerosol particles (Lambe et al., 2015; Ortega et al., 2016; Simonen et al.,
219	2017).
220	SOA yield can be described using a widely-used semi-empirical model on the basis

of the absorptive gas-particle partitioning of semi-volatile products, in which the overall
SOA yield (Y) is given by (Odum et al., 1996):

223
$$Y = \sum_{i} M_0 \frac{\alpha_i K_{om,i}}{1 + K_{om,i} M_0}$$
(2)

where α_i is the mass-based stoichiometric coefficient for the reaction producing the semi-volatile product i, K_{om,i} is the gas-particle partitioning equilibrium constant, and M₀ is the total aerosol mass concentration.

227 The SOA yield data in Table 2 can be plotted in the form of Eq. (2) to obtain the 228 yield curve for eugenol (Fig. 2). The simulation of experimental data indicated that an one-product model could accurately reproduce the data ($R^2 = 0.98$), while the use of 229 230 two or more products in the model did not significantly improve the fitting quality. 231 Odum et al. (1996) reported that the SOA yield data from the oxidation of aromatic 232 compounds could be fitted well using a two-product model. However, an one-product 233 model was also efficient for describing the SOA yields from the oxidation of aromatics 234 including methoxyphenols (Lauraguais et al., 2012, 2014b; Coeur-Tourneur et al., 235 2010b). The success of simulation with an one-product model in this work is likely to 236 indicate that the products in SOA have similar values of α_i and $K_{om,i}$, i.e., that the 237 obtained α_i (0.36 ±0.02) and K_{om,i} (0.013 ±0.002 m³ ug⁻¹) represent the average values. 238 In this work, considering that the composition of SOA was not determined, the volatility 239 basis set (VBS) approach was not applied to simulate SOA yields. Fig. S5 shows a plot 240 of the SOA mass concentration (M_0) versus the reacted eugenol concentration 241 (Δ [eugenol]). Its slope was 0.37 as obtained using linear least-squares fitting, which is very close to the α_i value (0.36). This suggests that the low-volatility products formed 242 in the reaction almost completely disperse on the particle phase according to the 243

244	theoretical partition model (Lauraguais et al., 2012, 2014b). In other words, SOA yield
245	was approximately an upper limit for eugenol oxidation in the OFR. In view of the
246	residence time in this work, it seems be in contradiction with the recommendation of
247	longer residence time made by Ahlberg et al. (2017), who found that the condensation
248	of low-volatility species on SOA in the OFR was often kinetically limited at low mass
249	concentrations. In our recent experiments (not published), the SOA yields for guaiacol
250	oxidation by OH radicals obtained under the similar experimental conditions as this
251	work, could be comparable to those obtained in the chamber studies (Fig. S6). This
252	suggests that the effect of kinetic limitations on SOA condensation for the OH-initiated
253	oxidation of methoxyphenols in this system might be not important.
254	Elemental ratios (H/C and O/C) could provide insights into SOA composition and
255	chemical processes along with aging (Bruns et al., 2015). As shown in Fig. 3, O/C ratio
256	of SOA increases and H/C ratio decreases with increasing OH exposure, because
257	oxygen-containing functional groups are formed in the oxidation products. In addition,
258	the organic mass fractions of m/z 44 (CO ₂ ⁺) and m/z 43 (mostly C ₂ H ₃ O ⁺), named f_{44}
259	and f_{43} , respectively, could also provide information about the nature of SOA formation.
260	Fig. S7 shows the evolution of f_{44} and f_{43} versus OH exposure at low (272 µg m ⁻³) and
261	high (1328 µg m ⁻³) concentrations of eugenol. The values of f_{44} were much higher than
262	those of f_{43} , and increased significantly as a function of OH exposure, suggesting that

263 SOA formed in the experiments became more oxidized. The f_{44} value in this work

ranges up to 0.26, which is consistent with that observed for ambient low-volatility (LV-

265	OA), higher than 0.25 (Ng et al., 2010).
-00	

266	The average carbon oxidation state (OS_C) proposed by Kroll et al. (2011) is
267	considered a more accurate indicator of the oxidation degree of atmospheric organic
268	species than the O/C ratio alone, because it takes into account the saturation level of the
269	carbon atoms in the SOA. OS _C is defined as $OS_C = 2O/C - H/C$ (Kroll et al., 2011),
270	calculated according to the elemental composition of SOA measured by HR-ToF-AMS.
271	In this work, the OS_C values obtained at low (272 $\mu g~m^{\text{-}3})$ and high (1328 $\mu g~m^{\text{-}3})$
272	concentrations of eugenol were compared. As shown in Fig. 3, $\ensuremath{OS_C}$ values for low
273	concentration $(0.035-1.78)$ were much larger than those for high concentration
274	(0.0036–1.09), and increased linearly (R ² > 0.96) with OH exposure of (1.21–12.55) \times
275	10^{11} molecules cm ⁻³ s. The results are well supported by the evolution of SOA mass
276	spectra obtained by HR-ToF-AMS at the same eugenol concentrations (Fig. S8).
277	Similar trends have been observed in the smog chamber and PAM reactor (Simonen et
278	al., 2017; Ortega et al., 2016). The OS_C value in this work extends as high as 1.78,
279	which is in good agreement with that observed for ambient LV-OA, up to 1.9 (Kroll et
280	al., 2011). Recently, Ortega et al. (2016) reported that the OS_C value for SOA formed
281	from ambient air in an OFR ranged up to 2.0; and Simonen et al. (2017) determined a
282	high OS_C value (> 1.1) for SOA formed from the OH-initiated reaction of toluene in a
283	PAM reactor with an OH exposure of 1.2 $\times 10^{12}$ molecules cm $^{\text{-3}}$ s. In general, the OS $_{\text{C}}$
284	values for the PAM reactor are higher than those for smog chambers due to the high
285	OH exposure in the PAM reactor (Simonen et al., 2017; Ortega et al., 2016; Lambe et

- al., 2015). Higher OS_C value indicates greater age, where the SOA components are
- 287 further oxidized through heterogeneous oxidation, adding substantial oxygen and
- 288 reducing hydrogen in the molecules in the particle-phase to increase OS_C values despite
- the overall loss of SOA mass (Ortega et al., 2016).

290 3.3 Effect of SO₂ on SOA formation

291 As shown in Fig. 4, the presence of SO₂ favored SOA formation, and the sulfate concentration increased linearly ($R^2 = 0.99$) as a function of OH exposure. The 292 maximum SOA yield enhancement of 38.57% was obtained at OH exposure of 5.41 \times 293 10¹¹ molecules cm⁻³ s, and then decreased with the increase of OH exposure due to the 294 295 fragmented molecules formed through the oxidation of gas-phase species by high OH 296 exposure (Lambe et al., 2015; Ortega et al., 2016; Simonen et al., 2017). The SOA yield and sulfate concentration both increased linearly ($R^2 > 0.97$) as SO₂ concentration 297 increased from 0 to 198 ppbv at OH exposure of 1.21×10^{11} molecules cm⁻³ s (Fig. S9). 298 299 Compared to the initial SOA yield (0.049) obtained in the absence of SO₂, the SOA 300 yield (0.066) obtained in the presence of 198 ppbv SO₂ was enhanced by 34.69%. In 301 previous studies, Kleindienst et al. (2006) reported that the SOA yield from α -pinene 302 photooxidation increased by 40% in the presence of 252 ppbv SO₂; Liu et al. (2016b) 303 recently found that the SOA yield from 5 h photochemical aging of gasoline vehicle 304 exhaust was enhanced by 60-200% in the presence of ~150 ppbv SO₂.

As shown in Figs. 4 and S7, the increase of sulfate concentration was favorable for
 SOA formation. In this system, it is difficult to completely remove trace NH₃, thus the

307	formed sulfate was the mixture of sulfuric acid (H_2SO_4) and a small amount of
308	ammonium sulfate ((NH ₄) ₂ SO ₄). The in situ particle acidity was calculated as the H^+
309	concentration ([H ⁺], 40.23–648.39 nmol m ⁻³) according to the AIM-II model for the H–
310	$NH_4^+ - SO_4^{2-} - NO_3^ H_2O \ systems \ (http://www.aim.env.uea.ac.uk/aim/model2 \ /model2 \ /mod$
311	a.php; Liu et al., 2016b). The detailed description of the calculation method has been
312	represented elsewhere (Liu et al., 2016b). The elevated concentration of sulfate in the
313	particle phase with the increases of SO_2 concentration and OH exposure is an important
314	reason for the enhanced SOA yields (Kleindienst et al., 2006; Liu et al., 2016b). Cao
315	and Jang (2007) indicated that SOA yields from the oxidation of toluene and 1,3,5-
316	trimethylbenzene increased by 14–36% in the presence of acid seeds, with $[\mathrm{H^{+}}]$ of
317	240–860 nmol m^{-3} compared to those obtained in the presence of nonacid seeds. Similar
318	results concerning the effect of particle acidity on SOA yields were reported in other
319	studies (Kleindienst et al., 2006; Liu et al., 2016b; Jaoui et al., 2008; Xu et al., 2016).
320	However, Ng et al. (2007b) found that particle acidity had a negligible effect on SOA
321	yields from photooxidation of aromatics, possibly due to the low RH (~5%) used in
322	their work. The water content of aerosol plays an essential role in acidity effects (Cao
323	and Jang, 2007). Under acidic conditions, the gas-phase oxidation products of eugenol
324	would be partitioned more quickly into the particle-phase and further oxidized into low
325	volatility products, or produce oligomeric organics by acid-catalyzed heterogeneous
326	reactions, subsequently enhancing SOA yields (Cao and Jang, 2007; Jaoui et al., 2008;
327	Liu et al., 2016b; Xu et al., 2016). In addition, the formed sulfate not only serves as the

328	substrate for product condensation and likely participates in new particle formation
329	(NPF) (Jaoui et al., 2008; Wang et al., 2016), but also enhances the surface areas of
330	particles to facilitate heterogeneous reactions on aerosols (Xu et al., 2016). These roles
331	of sulfate are also favorable for increasing SOA yields. Recently, Friedman et al. (2016)
332	have indicated that SO ₂ could participate in the oxidation reactions of α -and β -pinene
333	and perturbs their oxidation in the OFR, but this possible effect could be ignored in this
334	work due to the relatively high RH and the negligible S/C ratio observed by HR-ToF-
335	AMS (Friedman et al., 2016).

336 3.4 Effect of NO₂ on SOA formation

337 It is well known that high NO_x concentration almost always plays a negative role in 338 NPF and SOA formation because the reaction of NO with RO2 radicals results in the 339 formation of more volatile products compared to the reaction of HO2 with RO2 radicals 340 (Sarrafzadeh et al., 2016). Previous studies reported that nitro-substituted products were 341 the main products for SOA formed from OH-initiated reactions of phenol precursors 342 including methoxyphenols, in the presence of NO_x (Finewax et al., 2018; Ahmad et al., 343 2017; Lauraguais et al., 2012, 2014b). Thus, the effect of NO₂ on SOA formation from 344 eugenol oxidation by OH radicals was investigated. As shown in Fig. 5, the nitrate 345 concentration measured by HR-ToF-AMS increased as a function of OH exposure in 346 the presence of 40 ppbv NO₂, but it was much lower than the sulfate concentration (Fig. 347 4) even though the OH rate constant for NO₂ was faster than that for SO₂ (Davis et al., 348 1979; Atkinson et al., 1976). The possible explanation is that the formed HNO₃ mainly

349	exists in the gas phase, and the relatively high temperature (301 \pm 1 K) is not favorable
350	for gaseous HNO ₃ distribution in the particle phase (Wang et al., 2016). It has been
351	indicated that the temperature range for the greatest loss of nitrate is 293-298 K (Keck
352	and Wittmaack, 2005). As illustrated in Fig. 5, the SOA yield enhancement and N/C
353	ratio both increased firstly and then decreased with rising OH exposure. The increase
354	of NO ₂ concentration (40–109 ppbv) is beneficial to SOA yields (0.053–0.062), N/C
355	ratio (0.032–0.041), and nitrate formation (4.29–6.30 μ g m ⁻³) (Fig. S10). Compared to
356	the presence of 41 ppbv SO ₂ , the maximum SOA yield enhancement (19.17%) in the
357	presence of 40 ppbv NO_2 is lower. For most aromatic precursors, the addition of ppbv
358	levels of NO_2 should have a negligible effect on SOA formation, because the rate
359	constants of OH-aromatic adducts with O_2 and NO_2 are on the order of approximate 10^{-10}
360	¹⁶ and 10 ⁻¹¹ cm ³ molecule ⁻¹ s ⁻¹ , respectively (Atkinson and Arey, 2003). But, for phenol
361	precursors only about 0.5 ppbv NO_2 is enough to compete with O_2 for the reaction with
362	OH-aromatic adducts (Finewax et al., 2018). Therefore, the enhancement effect of NO_2
363	on SOA formation might be relevant to the special case of phenols or methoxyphenols
364	but not other aromatic precursors.
365	It is noteworthy that the N/C ratio is in the range of 0.032–0.043, suggesting that
366	NO ₂ participated in the OH reaction of eugenol, through the addition to the OH-eugenol
367	adduct (Peng and Jimenez, 2017). Recently, Hunter et al. (2014) found that NO_2

- 368 participated in the OH reactions of yclic alkanes, and the N/C ratios were in the range
- 369 of 0.031–0.064, higher than those obtained in this work. The nitro-substituted products

370	are reported to be the main reaction products of the OH reactions of guaiacol and
371	syringol in the presence of NO ₂ (Lauraguais et al., 2014b; Ahmad et al., 2017). The N-
372	containing products might be also formed through the reactions involving with $\ensuremath{\text{NO}}_3$
373	radicals, which are possibly generated by the reaction between NO_2 and O_3 in this
374	system (Atkinson, 1991). But, the specific contribution of NO ₃ radicals could not be
375	quantified in this work. The relative low volatility of these products could reasonably
376	contribute to SOA formation (Duport éet al., 2016; Liu et al., 2016a). In addition, higher
377	NO_2/NO ratio favors the formation of nitro-substituted products, which are potentially
378	involved in NPF and SOA growth (Pereira et al., 2015). Ng et al. (2007a) also indicated
379	that NO_x could be beneficial to SOA formation for sesquiterpenes, due to the formation
380	of low volatility organic nitrates and the isomerization of large alkoxy radicals, resulting
381	in less volatile products. The decrease in the N/C ratio at high OH exposure suggested
382	that more volatile products were generated through the oxidation of particle-phase
383	species by OH radicasls.

The NO^+ / NO_2^+ ratios measured by HR-ToF-MS are widely used to identify inorganic and organic nitrates. The NO^+ / NO_2^+ ratios for inorganic nitrates have been reported to be in the range of 1.08–2.81 (Farmer et al., 2010; Sato et al., 2010). The ratio ranged from 2.06 to 2.54 in this work as determined by HR-ToF-AMS using ammonium nitrate as the calibration sample. However, the NO^+ / NO_2^+ ratios during oxidation of eugenol in the presence of 40 ppbv NO_2 were 3.98–6.09. They were higher than those for inorganic nitrates and consistent with those for organic nitrates

391	(3.82–5.84) from the photooxidation of aromatics (Sato et al., 2010). The abundance of
392	organic nitrates could be estimated from the N/C ratios determined in this work.
393	Assuming that the oxidation products in the SOA retain 10 carbon atoms, the yields of
394	organic nitrates are in the range of 32–43%, which are comparable to those reported in
395	earlier studies (Liu et al., 2015; Hunter et al., 2014). Liu et al. (2015) reported that the
396	nitrogen-containing organic mass contributed 31.5 $\pm4.4\%$ to the total SOA derived
397	from m-xylene oxidation by OH radicals. Hunter et al. (2014) estimated the organic
398	nitrate yields of SOA to be 31-64%, formed in the OH-initiated reactions of acyclic,
399	monocyclic, and polycyclic alkanes. This range obtained in this work should be the
400	upper limit due to the possibility of C-C bond scission of gas- and particle-phase
401	organics oxidized by high OH exposure. Besides, the maximum yield of nitrates for a
402	single reaction step is expected to be approximately 30% (Ziemann and Atkinson, 2012),
403	this suggests that multiple reaction steps are needed.

404 **3.5** Atmospheric implications

Biomass burning not only serves as a major contributor of atmospheric POA, but also has great SOA formation potential through atmospheric oxidation (Bruns et al., 2016; Gilardoni et al., 2016; Li et al., 2017; Ciarelli et al., 2017; Ding et al., 2017). Recent studies have indicated that SOA formed from biomass burning plays an important role in haze pollution in China (Li et al., 2017; Ding et al., 2017). Residential combustion (mainly wood burning) could contribute approximately 60–70% to SOA formation in winter at the European scale (Ciarelli et al., 2017). In addition, methoxyphenols are the

412	major component of OA from biomass burning (Bruns et al., 2016; Schauer and Cass,
413	2000). Based on our results and those of previous studies (Sun et al., 2010; Lauraguais
414	et al., 2012, 2014b; Ahmad et al., 2017; Yee et al., 2013; Ofner et al., 2011), it should
415	pay more attenion on the SOA formation from the OH oxidation of biomass burning
416	emissions and its subsequent effect on haze evolution, especially in China with
417	nationwide biomass burning and high daytime average [OH] in the ambient atmosphere
418	((5.2–7.5) \times 10 6 molecules cm $^{-3}$) (Yang et al., 2017). Meanwhile, the potential
419	contributions of SO_2 and NO_2 to SOA formation should also be taken into account,
420	because the concentrations of NO_{x} and $SO_{2}\xspace$ could be up to close 200 ppbv in the
421	severely polluted atmosphere in China (Li et al., 2017). Although eugenol
422	concentrations in this work are higher than those in the ambient atmosphere, the results
423	obtained in this work could provide new information for SOA formation from the
424	atmospheric oxidation of methoxyphenols, and might be useful for SOA modeling,
425	especially for air quality simulation modeling of the specific regions experiencing
426	serious pollution caused by fine particulate matter.

N-containing products formed from the oxidation of methoxyphenols could
contribute to water-soluble organics in SOA (Lauraguais et al., 2014b; Yang et al., 2016;
Zhang et al., 2016), which have been widely detected in atmospheric humic-like
substances (HULIS) (Wang et al., 2017). Due to their surface-active and UV-lightabsorbing properties, HULIS could influence the formation of cloud condensation
nuclei (CCN), solar radiation balance, and photochemical processes in the atmosphere

433 (Wang et al., 2017). The high reactivity of methoxyphenols toward atmospheric radicals 434 suggests that SOA was formed from their oxidation processes with relatively high 435 oxidation level, subsequently leading to SOA with strong optical absorption and 436 hygroscopic properties (Lambe et al., 2013; Massoli et al., 2010). Therefore, SOA 437 formed from the reactions of methoxyphenols with atmospheric oxidants might have 438 important effects on air quality and climate. In addition, the experimental results from 439 this study would help to further the understanding of the atmospheric aging process of 440 smoke plumes from biomass-burning emissions.

441 **4 Conclusions**

442 For the first time, the rate constant and SOA foramtion for the gas-phase reaction of 443 eugenol with OH radicals were investigated in an OFR. The second-order rate constant of eugenol with OH radicals was $(8.01 \pm 0.40) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹, measured by 444 the relative rate method, and the corresponding atmospheric lifetime was 2.31 h. In 445 446 addition, the significant SOA formation of eugenol oxidation by OH radicals was 447 observed. The maximum SOA yields (0.11-0.31) obtained at different eugenol concentrations could be expressed well by an one-product model. SOA yield was 448 449 dependent on OH exposure and eugenol concentration, which firstly increased and then 450 decreased as a function of OH exposure due to the possible C-C bond scission of gas-451 phase species by further oxidation or heterogeneous reactions involving OH radicals. 452 The OS_C and O/C ratio both increased significantly as a function of OH exposure, 453 suggesting that SOA became more oxidized. The presence of SO2 and NO2 was helpful

- 454 to increase SOA yield, and the maximum enhanced yields were 38.57% and 19.17%,
- 455 respectively. The observed N/C ratio of SOA was in the range of 0.032-0.043,
- 456 indicating that NO₂ participated in the OH-initiated reaction of eugenol, consequently
- 457 producing organic nitrates. The experimental results might be helpful to further
- 458 understand the atmospheric chemical behavior of eugenol and its SOA formation
- 459 potential from OH oxidation in the atmosphere.

460 Data availability

461 The experimental data are available upon request to the corresponding authors.

462 Competing interests

463 The authors declare that they have no conflict of interest.

464 Aknowledgements

465 This work was financially supported by the National Key R&D Program of China 466 (2016YFC0202700), the National Natural Science Foundation of China (21607088), 467 China Postdoctoral Science Foundation funded project (2017M620071), and the 468 Applied Basic Research Project of Science and Technology Department of Sichuan 469 Province (2018JY0303). Liu Y. would like to thank Beijing University of Chemical 470 Technology for financial supporting. Authors would also acknowledge the 471 experimental help provided by Dr. Xiaolei Bao from Hebei Provincial Academy of 472 Environmental Sciences, Shijiazhuang, China.

473 **References**

474	Ahlberg, E., Falk, J., Eriksson, A., Holst, T., Brune, W. H., Kristensson, A., Roldin, P.,
475	and Svenningsson, B.: Secondary organic aerosol from VOC mixtures in an
476	oxidation flow reactor, Atmos. Environ., 161, 210-220, doi:
477	10.1016/j.atmosenv.2017.05.005, 2017.
478	Ahmad, W., Coeur, C., Tomas, A., Fagniez, T., Brubach, JB., and Cuisset, A.: Infrared
479	spectroscopy of secondary organic aerosol precursors and investigation of the
480	hygroscopicity of SOA formed from the OH reaction with guaiacol and syringol,
481	Appl. Opt., 56, E116-E122, doi: 10.1364/ao.56.00e116, 2017.
482	Atkinson, R., Perry, R. A., and Pitts, J. N.: Rate constants for the reactions of the OH
483	radicals with NO ₂ ($M = Ar$ and N ₂) and SO ₂ ($M = Ar$), J. Chem. Phys., 65, 306-
484	310, doi: 10.1063/1.432770, 1976.
485	Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the NO ₃ radical
486	with organic compounds, J. Phys. Chem. Ref. Data, 20, 459-507, doi:
487	10.1063/1.555887, 1991.
488	Atkinson, R., and Arey, J.: Atmospheric degradation of volatile organic compounds,
489	Chem. Rev., 103, 4605-4638, doi: 10.1021/cr0206420, 2003.
490	Bari, M. A., Baumbach, G., Kuch, B., and Scheffknecht, G.: Wood smoke as a source
491	of particle-phase organic compounds in residential areas, Atmos. Environ., 43,
492	4722-4732, doi: 10.1016/j.atmosenv.2008.09.006, 2009.
493	Bari, M. A., Baumbach, G., Kuch, B., and Scheffknecht, G.: Temporal variation and
494	impact of wood smoke pollution on a residential area in southern Germany, Atmos.
495	Environ., 44, 3823-3832, doi: 10.1016/j.atmosenv.2010.06.031, 2010.
496	Bolling, A. K., Pagels, J., Yttri, K. E., Barregard, L., Sallsten, G., Schwarze, P. E., and
497	Boman, C.: Health effects of residential wood smoke particles: the importance of
498	combustion conditions and physicochemical particle properties, Part. Fibre
499	Toxicol., 6, doi: 10.1186/1743-8977-6-29, 2009.
500	Bruns, E. A., El Haddad, I., Keller, A., Klein, F., Kumar, N. K., Pieber, S. M., Corbin,
501	J. C., Slowik, J. G., Brune, W. H., Baltensperger, U., and Prevot, A. S. H.: Inter-
502	comparison of laboratory smog chamber and flow reactor systems on organic
503	aerosol yield and composition, Atmos. Meas. Tech., 8, 2315-2332, doi:
504	10.5194/amt-8-2315-2015, 2015.
505	Bruns, E. A., El Haddad, I., Slowik, J. G., Kilic, D., Klein, F., Baltensperger, U., and
506	Prevot, A. S. H.: Identification of significant precursor gases of secondary organic
507	aerosols from residential wood combustion, Sci. Rep., 6., doi: 10.1038/srep27881,
508	2016.
509	Cao, G., and Jang, M.: Effects of particle acidity and UV light on secondary organic
510	aerosol formation from oxidation of aromatics in the absence of $\ensuremath{\text{NO}_x}\xspace$, Atmos.
511	Environ., 41, 7603-7613, doi: 10.1016/j.atmosenv.2007.05.034, 2007.
512	Chen, Y., and Bond, T. C.: Light absorption by organic carbon from wood combustion,
513	Atmos. Chem. Phys., 10, 1773-1787, doi: 10.5194/acp-10-1773-2010, 2010.

514	Ciarelli, G., Aksoyoglu, S., El Haddad, I., Bruns, E. A., Crippa, M., Poulain, L., Aijala,
515	M., Carbone, S., Freney, E., O'Dowd, C., Baltensperger, U., and Prevot, A. S. H.:
516	Modelling winter organic aerosol at the European scale with CAMx: Evaluation
517	and source apportionment with a VBS parameterization based on novel wood
518	burning smog chamber experiments, Atmos. Chem. Phys., 7, 7653-7669, doi:
519	10.5194/acp-17-7653-2017, 2017.
520	Coeur-Tourneur, C., Cassez, A., and Wenger, J. C.: Rate Coefficients for the gas-phase
521	reaction of hydroxyl radicals with 2-methoxyphenol (guaiacol) and related
522	compounds, J. Phys. Chem. A, 114, 11645-11650, doi: 10.1021/jp1071023, 2010a.
523	Coeur-Tourneur, C., Foulon, V., and Lareal, M.: Determination of aerosol yields from
524	3-methylcatechol and 4-methylcatechol ozonolysis in a simulation chamber,
525	Atmos. Environ., 44, 852-857, doi: 10.1016/j.atmosenv.2009.11.027, 2010b.
526	Davis, D. D., Ravishankara, A. R., and Fischer, S.: SO ₂ oxidation via the hydroxyl
527	radical: Atmospheric fate of HSO _x radicals, Geophys. Res. Lett., 6, 113-116, doi:
528	10.1029/GL006i002p00113, 1979.
529	DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., and Jimenez, J. L.: Particle
530	morphology and density characterization by combined mobility and aerodynamic
531	diameter measurements. Part 1: Theory, Aerosol Sci. Technol., 38, 1185-1205, doi:
532	10.1080/027868290903907, 2004.
533	DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C.,
534	Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop, D. R., and Jimenez,
535	J. L.: Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer,
536	Anal. Chem., 78, 8281-8289, doi: 10.1021/ac061249n, 2006.
537	Dills, R. L., Paulsen, M., Ahmad, J., Kalman, D. A., Elias, F. N., and Simpson, C. D.:
538	Evaluation of urinary methoxyphenols as biomarkers of woodsmoke exposure,
539	Environ. Sci. Technol., 40, 2163-2170, doi: 10.1021/es051886f, 2006.
540	Ding, X., Zhang, YQ., He, QF., Yu, QQ., Wang, JQ., Shen, RQ., Song, W., Wang,
541	YS., and Wang, XM.: Significant increase of aromatics-derived secondary
542	organic aerosol during fall to winter in China, Environ. Sci. Technol., 51, 7432-
543	7441, doi: 10.1021/acs.est.6b06408, 2017.
544	Duport é, G., Parshintsev, J., Barreira, L. M. F., Hartonen, K., Kulmala, M., and
545	Riekkola, ML.: Nitrogen-containing low volatile compounds from
546	pinonaldehyde-dimethylamine reaction in the atmosphere: A laboratory and field
547	study, Environ. Sci. Technol., 50, 4693-4700, doi: 10.1021/acs.est.6b00270, 2016.
548	El Zein, A., Coeur, C., Obeid, E., Lauraguais, A., and Fagniez, T.: Reaction kinetics of
549	catechol (1,2-benzenediol) and guaiacol (2-methoxyphenol) with ozone, J. Phys.
550	Chem. A, 119, 6759-6765, doi: 10.1021/acs.jpca.5b00174, 2015.
551	Farmer, D. K., Matsunaga, A., Docherty, K. S., Surratt, J. D., Seinfeld, J. H., Ziemann,
552	P. J., and Jimenez, J. L.: Response of an aerosol mass spectrometer to
552 553	organonitrates and organosulfates and implications for atmospheric chemistry,
555 554	Proc. Natl. Acad. Sci. U. S. A, 107, 6670-6675, doi: 10.1073/pnas.0912340107,
555	2010.
200	

556	Finewax, Z., de Gouw, J. A., and Ziemann, P. J.: Identification and quantification of 4-
557	nitrocatechol formed from OH and NO3 radical-initiated reactions of catechol in
558	air in the presence of NO _x : Implications for secondary organic aerosol formation
559	from biomass burning, Environ. Sci. Technol., 52, 1981-1989, doi:
560	10.1021/acs.est.7b05864, 2018.
561	Friedman, B., Brophy, P., Brune, W. H., and Farmer, D. K.: Anthropogenic sulfur
562	perturbations on biogenic oxidation: SO2 additions impact gas-phase OH oxidation
563	products of alpha- and beta-pinene, Environ. Sci. Technol., 50, 1269-1279, doi:
564	10.1021/acs.est.5b05010, 2016.
565	Gilardoni, S., Massoli, P., Paglione, M., Giulianelli, L., Carbone, C., Rinaldi, M.,
566	Decesari, S., Sandrini, S., Costabile, F., Gobbi, G. P., Pietrogrande, M. C., Visentin,
567	M., Scotto, F., Fuzzi, S., and Facchini, M. C.: Direct observation of aqueous
568	secondary organic aerosol from biomass-burning emissions, Proc. Natl. Acad. Sci.
569	U. S. A, 113, 10013-10018, doi: 10.1073/pnas.1602212113, 2016.
570	Gordon, T. D., Presto, A. A., Nguyen, N. T., Robertson, W. H., Na, K., Sahay, K. N.,
571	Zhang, M., Maddox, C., Rieger, P., Chattopadhyay, S., Maldonado, H., Maricq, M.
572	M., and Robinson, A. L.: Secondary organic aerosol production from diesel
573	vehicle exhaust: impact of aftertreatment, fuel chemistry and driving cycle, Atmos.
574	Chem. Phys., 14, 4643-4659, doi: 10.5194/acp-14-4643-2014, 2014.
575	http://www.aim.env.uea.ac.uk/aim/model2/model2a.php.
576	Hunter, J. F., Carrasquillo, A. J., Daumit, K. E., and Kroll, J. H.: Secondary organic
577	aerosol formation from acyclic, monocyclic, and polycyclic alkanes, Environ. Sci.
578	Technol., 48, 10227-10234, doi: 10.1021/es502674s, 2014.
579	Jaoui, M., Edney, E. O., Kleindienst, T. E., Lewandowski, M., Offenberg, J. H., Surratt,
580	J. D., and Seinfeld, J. H.: Formation of secondary organic aerosol from irradiated
581	alpha-pinene/toluene/ NO_x mixtures and the effect of isoprene and sulfur dioxide,
582	J. Geophys. ResAtmos., 113, doi: 10.1029/2007jd009426, 2008.
583	Jeong, CH., Evans, G. J., Dann, T., Graham, M., Herod, D., Dabek-Zlotorzynska, E.,
584	Mathieu, D., Ding, L., and Wang, D.: Influence of biomass burning on wintertime
585	fine particulate matter: Source contribution at a valley site in rural British
586	Columbia, Atmos. Environ., 42, 3684-3699, doi: 10.1016/j.atmosenv.2008.01.006,
587	2008.
588	Kang, E., Root, M. J., Toohey, D. W., and Brune, W. H.: Introducing the concept of
589	Potential Aerosol Mass (PAM), Atmos. Chem. Phys., 7, 5727-5744, doi:
590	10.5194/acp-7-5727-2007, 2007.
590 591	Keck, L., and Wittmaack, K.: Effect of filter type and temperature on volatilisation
591 592	losses from ammonium salts in aerosol matter, Atmos. Environ., 39, 4093-4100,
	doi: 10.1016/j.atmosenv.2005.03.029, 2005.
593 504	Kleindienst, T. E., Shepson, P. B., Edney, E. O., Claxton, L. D., and Cupitt, L. T.: Wood
594 505	
595 506	smoke: Measurement of the mutagenic activities of its gas- and particulate-phase
596	photooxidation products, Environ. Sci. Technol., 20, 493-501, doi:
597	10.1021/es00147a009, 1986.

598	Kleindienst, T. E., Edney, E. O., Lewandowski, M., Offenberg, J. H., and Jaoui, M.:
599	Secondary organic carbon and aerosol yields from the irradiations of isoprene and
600	alpha-pinene in the presence of NO _x and SO ₂ , Environ. Sci. Technol., 40, 3807-
601	3812, doi: 10.1021/es052446r, 2006.
602	Kramp, F., and Paulson, S. E.: On the uncertainties in the rate coefficients for OH
603	reactions with hydrocarbons, and the rate coefficients of the 1,3,5-
604	trimethylbenzene and m-xylene reactions with OH radicals in the gas phase, J.
605	Phys. Chem. A, 102, 2685-2690, doi: 10.1021/jp9732890, 1998.
606	Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna, M. R., Wilson,
607	K. R., Altieri, K. E., Mazzoleni, L. R., Wozniak, A. S., Bluhm, H., Mysak, E. R.,
608	Smith, J. D., Kolb, C. E., and Worsnop, D. R.: Carbon oxidation state as a metric
609	for describing the chemistry of atmospheric organic aerosol, Nature Chem., 3, 133-
610	139, doi: 10.1038/nchem.948, 2011.
611	Lambe, A. T., Cappa, C. D., Massoli, P., Onasch, T. B., Forestieri, S. D., Martin, A. T.,
612	Cummings, M. J., Croasdale, D. R., Brune, W. H., Worsnop, D. R., and Davidovits,
613	P.: Relationship between oxidation level and optical properties of secondary
614	organic aerosol, Environ. Sci. Technol., 47, 6349-6357, doi: 10.1021/es401043j,
615	2013.
616	Lambe, A. T., Chhabra, P. S., Onasch, T. B., Brune, W. H., Hunter, J. F., Kroll, J. H.,
617	Cummings, M. J., Brogan, J. F., Parmar, Y., Worsnop, D. R., Kolb, C. E., and
618	Davidovits, P.: Effect of oxidant concentration, exposure time, and seed particles
619	on secondary organic aerosol chemical composition and yield, Atmos. Chem.
620	Phys., 15, 3063-3075, doi: 10.5194/acp-15-3063-2015, 2015.
621	Lauraguais, A., Coeur-Tourneur, C., Cassez, A., and Seydi, A.: Rate constant and
622	secondary organic aerosol yields for the gas-phase reaction of hydroxyl radicals
623	with syringol (2,6-dimethoxyphenol), Atmos. Environ., 55, 43-48, doi:
624	10.1016/j.atmosenv.2012.02.027, 2012.
625	Lauraguais, A., Bejan, I., Barnes, I., Wiesen, P., Coeur-Tourneur, C., and Cassez, A.:
626	Rate coefficients for the gas-phase reaction of chlorine atoms with a series of
627	methoxylated aromatic compounds, J. Phys. Chem. A, 118, 1777-1784, doi:
628	10.1021/jp4114877, 2014a.
629	Lauraguais, A., Coeur-Tourneur, C., Cassez, A., Deboudt, K., Fourmentin, M., and
630	Choel, M.: Atmospheric reactivity of hydroxyl radicals with guaiacol (2-
631	methoxyphenol), a biomass burning emitted compound: Secondary organic
632	aerosol formation and gas-phase oxidation products, Atmos. Environ., 86, 155-
633	163, doi: 10.1016/j.atmosenv.2013.11.074, 2014b.
634	Lauraguais, A., Bejan, I., Barnes, I., Wiesen, P., and Coeur, C.: Rate coefficients for the
635	gas-phase reactions of hydroxyl radicals with a series of methoxylated aromatic
636	compounds, J. Phys. Chem. A, 119, 6179-6187, doi: 10.1021/acs.jpca.5b03232,
637	2015.
638	Lauraguais, A., El Zein, A., Coeur, C., Obeid, E., Cassez, A., Rayez, MT., and Rayez,
639	JC.: Kinetic study of the gas-phase reactions of nitrate radicals with

640	
640	methoxyphenol compounds: Experimental and theoretical approaches, J. Phys.
641	Chem. A, 120, 2691-2699, doi: 10.1021/acs.jpca.6b02729, 2016.
642	Li, H., Zhang, Q., Zhang, Q., Chen, C., Wang, L., Wei, Z., Zhou, S., Parworth, C.,
643	Zheng, B., Canonaco, F., Prevot, A. S. H., Chen, P., Zhang, H., Wallington, T. J.,
644	and He, K.: Wintertime aerosol chemistry and haze evolution in an extremely
645	polluted city of the North China Plain: Significant contribution from coal and
646	biomass combustion, Atmos. Chem. Phys., 17, 4751-4768, doi: 10.5194/acp-17-
647	4751-2017, 2017.
648	Li, R., Palm, B. B., Ortega, A. M., Hlywiak, J., Hu, W., Peng, Z., Day, D. A., Knote, C.,
649	Brune, W. H., de Gouw, J. A., and Jimenez, J. L.: Modeling the radical chemistry
650	in an oxidation flow reactor: Radical formation and recycling, sensitivities, and
651	the OH exposure estimation equation, J. Phys. Chem. A, 119, 4418-4432, doi:
652	10.1021/jp509534k, 2015.
653	Liu, J., Lin, P., Laskin, A., Laskin, J., Kathmann, S. M., Wise, M., Caylor, R., Imholt,
654	F., Selimovic, V., and Shilling, J. E.: Optical properties and aging of light-
655	absorbing secondary organic aerosol, Atmos. Chem. Phys., 16, 12815-12827, doi:
656	10.5194/acp-16-12815-2016, 2016a.
657	Liu, T., Wang, X., Hu, Q., Deng, W., Zhang, Y., Ding, X., Fu, X., Bernard, F., Zhang,
658	Z., Lu, S., He, Q., Bi, X., Chen, J., Sun, Y., Yu, J., Peng, P., Sheng, G., and Fu, J.:
659	Formation of secondary aerosols from gasoline vehicle exhaust when mixing with
660	SO ₂ , Atmos. Chem. Phys., 16, 675-689, doi: 10.5194/acp-16-675-2016, 2016b.
661	Liu, Y., Liggio, J., Harner, T., Jantunen, L., Shoeib, M., and Li, SM.: Heterogeneous
662	OH initiated oxidation: A possible explanation for the persistence of
663	organophosphate flame retardants in air, Environ. Sci. Technol., 48, 1041-1048,
664	doi: 10.1021/es404515k, 2014.
665	Liu, Y., Liggio, J., Staebler, R., and Li, S. M.: Reactive uptake of ammonia to secondary
666	organic aerosols: Kinetics of organonitrogen formation, Atmos. Chem. Phys., 15,
667	13569-13584, doi: 10.5194/acp-15-13569-2015, 2015.
668	Mao, J., Ren, X., Brune, W. H., Olson, J. R., Crawford, J. H., Fried, A., Huey, L. G.,
669	Cohen, R. C., Heikes, B., Singh, H. B., Blake, D. R., Sachse, G. W., Diskin, G. S.,
670	Hall, S. R., and Shetter, R. E.: Airborne measurement of OH reactivity during
671	INTEX-B, Atmos. Chem. Phys., 9, 163-173, doi: 10.5194/acp-9-163-2009, 2009.
672	Massoli, P., Lambe, A. T., Ahern, A. T., Williams, L. R., Ehn, M., Mikkila, J.,
673	Canagaratna, M. R., Brune, W. H., Onasch, T. B., Jayne, J. T., Petaja, T., Kulmala,
674	M., Laaksonen, A., Kolb, C. E., Davidovits, P., and Worsnop, D. R.: Relationship
675	between aerosol oxidation level and hygroscopic properties of laboratory
676	generated secondary organic aerosol (SOA) particles, Geophys. Res. Lett., 37, doi:
677	10.1029/2010gl045258, 2010.
678	McMurry, J. E.: Organic Chemistry, 6th ed., 2004.
679	Ng, N. L., Chhabra, P. S., Chan, A. W. H., Surratt, J. D., Kroll, J. H., Kwan, A. J.,
680	McCabe, D. C., Wennberg, P. O., Sorooshian, A., Murphy, S. M., Dalleska, N. F.,
681	Flagan, R. C., and Seinfeld, J. H.: Effect of NOx level on secondary organic

682	aerosol (SOA) formation from the photooxidation of terpenes, Atmos. Chem.
683	Phys., 7, 5159-5174, doi: 10.5194/acp-7-5159-2007, 2007a.
684	Ng, N. L., Kroll, J. H., Chan, A. W. H., Chhabra, P. S., Flagan, R. C., and Seinfeld, J.
685	H.: Secondary organic aerosol formation from m-xylene, toluene, and benzene,
686	Atmos. Chem. Phys., 7, 3909-3922, doi: 10.5194/acp-7-3909-2007, 2007b.
687	Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I. M., Kroll,
688	J. H., Docherty, K. S., Chhabra, P. S., Bahreini, R., Murphy, S. M., Seinfeld, J. H.,
689	Hildebrandt, L., Donahue, N. M., DeCarlo, P. F., Lanz, V. A., Prevot, A. S. H.,
690	Dinar, E., Rudich, Y., and Worsnop, D. R.: Organic aerosol components observed
691	in Northern Hemispheric datasets from Aerosol Mass Spectrometry, Atmos. Chem.
692	Phys., 10, 4625-4641, doi: 10.5194/acp-10-4625-2010, 2010.
693	Nolte, C. G., Schauer, J. J., Cass, G. R., and Simoneit, B. R. T.: Highly polar organic
694	compounds present in wood smoke and in the ambient atmosphere, Environ. Sci.
695	Technol., 35, 1912-1919, doi: 10.1021/es001420r, 2001.
696	Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and Seinfeld, J. H.:
697	Gas/particle partitioning and secondary organic aerosol yields, Environ. Sci.
698	Technol., 30, 2580-2585, doi: 10.1021/es950943+, 1996.
699	Ofner, J., Krueger, H. U., Grothe, H., Schmitt-Kopplin, P., Whitmore, K., and Zetzsch,
700	C.: Physico-chemical characterization of SOA derived from catechol and guaiacol
701	- a model substance for the aromatic fraction of atmospheric HULIS, Atmos. Chem.
702	Phys., 11, 1-15, doi: 10.5194/acp-11-1-2011, 2011.
703	Ortega, A. M., Hayes, P. L., Peng, Z., Palm, B. B., Hu, W., Day, D. A., Li, R., Cubison,
704	M. J., Brune, W. H., Graus, M., Warneke, C., Gilman, J. B., Kuster, W. C., de
705	Gouw, J., Gutierrez-Montes, C., and Jimenez, J. L.: Real-time measurements of
706	secondary organic aerosol formation and aging from ambient air in an oxidation
707	flow reactor in the Los Angeles area, Atmos. Chem. Phys., 16, 7411-7433, doi:
708	10.5194/acp-16-7411-2016, 2016.
709	Peng, Z., Day, D. A., Stark, H., Li, R., Lee-Taylor, J., Palm, B. B., Brune, W. H., and
710	Jimenez, J. L.: HOx radical chemistry in oxidation flow reactors with low-pressure
711	mercury lamps systematically examined by modeling, Atmos. Meas. Tech., 8,
712	4863-4890, doi: 10.5194/amt-8-4863-2015, 2015.
713	Peng, Z., Day, D. A., Ortega, A. M., Palm, B. B., Hu, W., Stark, H., Li, R., Tsigaridis,
714	K., Brune, W. H., and Jimenez, J. L.: Non-OH chemistry in oxidation flow reactors
715	for the study of atmospheric chemistry systematically examined by modeling,
716	Atmos. Chem. Phys., 16, 4283-4305, doi: 10.5194/acp-16-4283-2016, 2016.
717	Peng, Z., and Jimenez, J. L.: Modeling of the chemistry in oxidation flow reactors with
718	high initial NO, Atmos. Chem. Phys., 17, 11991-12010, doi: 10.5194/acp-17-
719	11991-2017, 2017.
720	Pereira, K. L., Hamilton, J. F., Rickard, A. R., Bloss, W. J., Alam, M. S., Camredon, M.,
721	Ward, M. W., Wyche, K. P., Munoz, A., Vera, T., Vazquez, M., Borras, E., and
722	Rodenas, M.: Insights into the formation and evolution of individual compounds
723	in the particulate phase during aromatic photo-oxidation, Environ. Sci. Technol.,

724	49, 13168-13178, doi: 10.1021/acs.est.5b03377, 2015.
725	Sarrafzadeh, M., Wildt, J., Pullinen, I., Springer, M., Kleist, E., Tillmann, R., Schmitt,
726	S. H., Wu, C., Mentel, T. F., Zhao, D., Hastie, D. R., and Kiendler-Scharr, A.:
727	Impact of NOx and OH on secondary organic aerosol formation from beta-pinene
728	photooxidation, Atmos. Chem. Phys., 16, 11237-11248, doi: 10.5194/acp-16-
729	11237-2016, 2016.
730	Sato, K., Takami, A., Isozaki, T., Hikida, T., Shimono, A., and Imamura, T.: Mass
731	spectrometric study of secondary organic aerosol formed from the photo-oxidation
732	of aromatic hydrocarbons, Atmos. Environ., 44, 1080-1087, doi:
733	10.1016/j.atmosenv.2009.12.013, 2010.
734	Schauer, J. J., and Cass, G. R.: Source apportionment of wintertime gas-phase and
735	particle-phase air pollutants using organic compounds as tracers, Environ. Sci.
736	Technol., 34, 1821-1832, doi: 10.1021/es981312t, 2000.
737	Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of
738	emissions from air pollution sources. 3. C-1-C-29 organic compounds from
739	fireplace combustion of wood, Environ. Sci. Technol., 35, 1716-1728, doi:
740	10.1021/es001331e, 2001.
741	Simonen, P., Saukko, E., Karjalainen, P., Timonen, H., Bloss, M., Aakko-Saksa, P.,
742	Ronkko, T., Keskinen, J., and Dal Maso, M.: A new oxidation flow reactor for
743	measuring secondary aerosol formation of rapidly changing emission sources,
744	Atmos. Meas. Tech., 10, 1519-1537, doi: 10.5194/amt-10-1519-2017, 2017.
745	Simpson, C. D., Paulsen, M., Dills, R. L., Liu, L. J. S., and Kalman, D. A.:
746	Determination of methoxyphenols in ambient atmospheric particulate matter:
747	Tracers for wood combustion, Environ. Sci. Technol., 39, 631-637, doi:
748	10.1021/es0486871, 2005.
749	Sun, Y. L., Zhang, Q., Anastasio, C., and Sun, J.: Insights into secondary organic aerosol
750	formed via aqueous-phase reactions of phenolic compounds based on high
751	resolution mass spectrometry, Atmos. Chem. Phys., 10, 4809-4822, doi:
752	10.5194/acp-10-4809-2010, 2010.
753	Thuner, L. P., Bardini, P., Rea, G. J., and Wenger, J. C.: Kinetics of the gas-phase
754	reactions of OH and NO3 radicals with dimethylphenols, J. Phys. Chem. A, 108,
755	11019-11025, 10.1021/jp046358p, 2004.
756	Tiitta, P., Leskinen, A., Hao, L., Yli-Pirila, P., Kortelainen, M., Grigonyte, J., Tissari, J.,
757	Lamberg, H., Hartikainen, A., Kuuspalo, K., Kortelainen, AM., Virtanen, A.,
758	Lehtinen, K. E. J., Komppula, M., Pieber, S., Prevot, A. S. H., Onasch, T. B.,
759	Worsnop, D. R., Czech, H., Zimmermann, R., Jokiniemi, J., and Sippula, O.:
760	Transformation of logwood combustion emissions in a smog chamber: formation
761	of secondary organic aerosol and changes in the primary organic aerosol upon
762	daytime and nighttime aging, Atmos. Chem. Phys., 16, 13251-13269, doi:
763	10.5194/acp-16-13251-2016, 2016.
764	US EPA: Estimation Programs Interface Suite TM for Microsoft® Windows, v 4.11,
765	United States Environmental Protection Agency, Washington, DC, USA, 2012.

766	Wang, D., Zhou, B., Fu, Q., Zhao, Q., Zhang, Q., Chen, J., Yang, X., Duan, Y., and Li,
767	J.: Intense secondary aerosol formation due to strong atmospheric photochemical
768	reactions in summer: observations at a rural site in eastern Yangtze River Delta of
769	China, Sci. Total Environ., 571, 1454-1466, doi: 10.1016/j.scitotenv.2016.06.212,
770	2016.
771	Wang, Y., Hu, M., Lin, P., Guo, Q., Wu, Z., Li, M., Zeng, L., Song, Y., Zeng, L., Wu,
772	Y., Guo, S., Huang, X., and He, L.: Molecular characterization of nitrogen-
773	containing organic compounds in humic-like substances emitted from straw
774	residue burning, Environ. Sci. Technol., 51, 5951-5961, doi:
775	10.1021/acs.est7b00248, 2017.
776	Ward, T. J., Rinehart, L. R., and Lange, T.: The 2003/2004 Libby, Montana PM2.5
777	source apportionment research study, Aerosol Sci. Technol., 40, 166-177, doi:
778	10.1080/02786820500494536, 2006.
779	Xu, L., Middlebrook, A. M., Liao, J., de Gouw, J. A., Guo, H., Weber, R. J., Nenes, A.,
780	Lopez-Hilfiker, F. D., Lee, B. H., Thornton, J. A., Brock, C. A., Neuman, J. A.,
781	Nowak, J. B., Pollack, I. B., Welti, A., Graus, M., Warneke, C., and Ng, N. L.:
782	Enhanced formation of isoprene-derived organic aerosol in sulfur-rich power plant
783	plumes during Southeast Nexus, J. Geophys. ResAtmos., 121, 11137-11153, doi:
784	10.1002/2016jd025156, 2016.
785	Yang, B., Zhang, H., Wang, Y., Zhang, P., Shu, J., Sun, W., and Ma, P.: Experimental
786	and theoretical studies on gas-phase reactions of NO3 radicals with three
787	methoxyphenols: Guaiacol, creosol, and syringol, Atmos. Environ., 125, 243-251,
788	doi: 10.1016/j.atmosenv.2015.11.028, 2016.
789	Yang, Y., Shao, M., Kessel, S., Li, Y., Lu, K., Lu, S., Williams, J., Zhang, Y., Zeng, L.,
790	Noelscher, A. C., Wu, Y., Wang, X., and Zheng, J.: How the OH reactivity affects
791	the ozone production efficiency: case studies in Beijing and Heshan, China, Atmos.
792	Chem. Phys., 17, 7127-7142, doi: 10.5194/acp-17-7127-2017, 2017.
793	Yee, L. D., Kautzman, K. E., Loza, C. L., Schilling, K. A., Coggon, M. M., Chhabra, P.
794	S., Chan, M. N., Chan, A. W. H., Hersey, S. P., Crounse, J. D., Wennberg, P. O.,
795	Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from
796	biomass burning intermediates: phenol and methoxyphenols, Atmos. Chem. Phys.,
797	13, 8019-8043, doi: 10.5194/acp-13-8019-2013, 2013.
798	Zhang, H., Yang, B., Wang, Y., Shu, J., Zhang, P., Ma, P., and Li, Z.: Gas-phase reactions
799	of methoxyphenols with NO3 radicals: Kinetics, products, and mechanisms, J.
800	Phys. Chem. A, 120, 1213-1221, doi: 10.1021/acs.jpca.5b10406, 2016.
801	Zhang, X., Lambe, A. T., Upshur, M. A., Brooks, W. A., Be, A. G., Thomson, R. J.,
802	Geiger, F. M., Surratt, J. D., Zhang, Z., Gold, A., Graf, S., Cubison, M. J., Groessl,
803	M., Jayne, J. T., Worsnop, D. R., and Canagaratna, M. R.: Highly oxygenated
804	multifunctional compounds in alpha-pinene secondary organic aerosol, Environ.
805	Sci. Technol., 51, 5932-5940, doi: 10.1021/acs.est.6b06588, 2017.
806	Ziemann, P. J., and Atkinson, R.: Kinetics, products, and mechanisms of secondary
807	organic aerosol formation, Chem. Soc. Rev., 41, 6582-6605, doi:

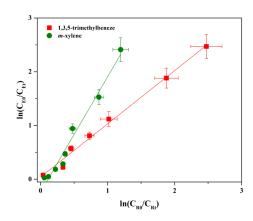
808 10.1039/c2cs35122f, 2012.

- 809 Table 1. Rate constant for gas-phase reaction of eugenol with OH radicals and
- 810 associated atmospheric lifetime.

Compound	Structure	References	$k_{\rm E}/k_{\rm R}$	k _E ^a	k _{OH} ^a	k _E (average) ^a	$\tau_{\rm OH}(h)^b$
eugenol	H ₃ CO	1,3,5-trimethylbeneze	1.33 ± 0.05	$7.54\pm\!0.28$	6.50°	8.01 +0.40	2.21
$(C_{10}H_{12}O_2)$	но	<i>m</i> -xylene	3.85 ± 0.23	8.47 ± 0.51	0.50	8.01 ±0.40	2.31

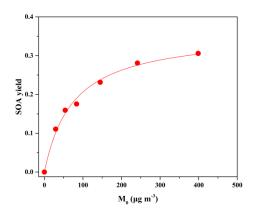
- 811 ^a Units of 10^{-11} cm³ molecule⁻¹ s⁻¹.
- 812 ^b Atmospheric lifetime in hours. $\tau_{OH}=1/k_{E}[OH]$, assuming a 24 h average [OH] = 1.5 ×
- 813 10^6 molecules cm⁻³ (Mao et al., 2009).
- ^c Calculated using US EPA AOP WIN model (US EPA, 2012).

815 **Table 2.** Experimental conditions and results.


Expt.	$[eugenol]_0{}^a(\mu g\ m^{\text{-}3})$	$\Delta [eugenol]^b(\mu g\ m^{\text{-}3})$	$M_0{}^{\rm c}(\mu gm^{-3})$	$Y_{max}{}^{d} \\$	OH Exposure ^e (10 ¹¹ molecules cm ⁻³ s)	$\tau^{f}\left(d\right)$
#1	272	265	29	0.11	5.41	4.17
#2	351	339	54	0.16	5.41	4.17
#3	485	474	83	0.18	5.41	4.17
#4	636	625	145	0.23	5.41	4.17
#5	874	858	241	0.28	7.37	5.68
#6	1327	1304	399	0.31	8.91	6.87

- 816 ^a Initial eugenol concentrations.
- 817 ^b Reacted eugenol concentrations.
- 818 ^c SOA concentrations.
- 819 ^d Maximum SOA yields.
- ^e Corresponding OH exposure of maximum SOA yields.
- 821 ^f Corresponding atmospheric aging time of maximum SOA yields, calculated using a
- typical [OH] in the atmosphere in this work $(1.5 \times 10^6 \text{ molecules cm}^{-3})$ (Mao et al.,

823 2009).

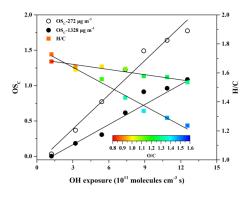


824

825 **Figure 1.** Relative rate plots for gas-phase reaction of OH radicals with eugenol.

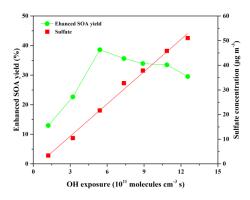
826

827 Figure 2. Maximum SOA yield as a function of SOA mass concentration (M₀) formed


828 from the OH reactions at different eugenol concentrations. The solid line was fit to the

829 experimental data using an one-product model. Values for α_i and K_{om,i} used to generate

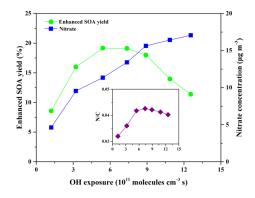
the solid line are (0.36 ± 0.02) and (0.013 ± 0.002) , respectively.



831

832 Figure 3. OS_C, H/C, and O/C vs. the OH exposure for SOA formed at two eugenol

833 concentrations (272 and 1328 μ g m⁻³).


835 Figure 4. Evolution of the enhanced SOA yield and sulfate formation as a function of

836 OH exposure in the presence of 41 ppbv SO₂ at average eugenol concentration of 273

837 μg m⁻³.

839 Figure 5. Evolution of the enhanced SOA yields, nitrate formation, and N/C ratioas a

840 function of OH exposure in the presence of 40 ppbv NO_2 at average eugenol

841 concentration of 273 μ g m⁻³.